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Executive Summary 

This paper describes a spreadsheet-level model for analyzing attacks by a small, 

mixed collection of ICBMs, perhaps including decoys, on a set of targets individually 

defended by terminal ABMs. The central questions are how a fixed supply of ABMs 

should be divided up among the targets, and the resulting effectiveness of the optimized 

defense.  All ABMs are assumed perfect in the sense that each ABM eliminates the 

reentry vehicle at which it is aimed.  Since the ABM assignments are apparent to the 

attacker, he can “soak them up” by presenting the appropriate number of his least 

effective reentry vehicles to the subject target.  The target is then vulnerable to any 

remaining “bangs” among the attackers. 
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Abstract 

Analyses of the terminal defense of a set of targets by anti-ballistic missiles are 

generally conducted under the assumption that all attacking reentry vehicles are identical.  

This paper generalizes to the case where the attacking arsenal is mixed, the main 

motivation being that a mixed attacking arsenal can contain decoys that are harmless to 

targets, but which can still “soak up” defenders.  All defenders are assumed to be perfect, 

and the main focus of the paper is on cases where the attack is comparatively weak.  A 

kind of Prim-Read defense results.  A simple method for deriving an upper bound on 

damage is described and illustrated. 

Introduction 

As nuclear weapons and the means to deliver them by ballistic missiles proliferate 

(Feickert, 2004), it becomes increasingly likely that a credible threat to use them might 

eventually be made or even carried out.  Concern about this has led to various proposals 

for defense against small ICBM attacks, with anti-ballistic missiles (ABMs) being the 

centerpiece. For example, on December 17, 2002, the President of the United States gave 

ABM development for such contingencies as a justification for withdrawing from the 

1972 ABM treaty (Bush, 2002).  See Missile Defense Agency (2004) for an overview of 

the current United States ballistic missile defense program. 
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This paper introduces a method for assessing the effectiveness of terminal ABMs 

for defending against an attack by ICBMs carrying a mixture of reentry vehicles (RVs) of 

different types.  All of these RVs are assumed to be indistinguishable to the defense when 

assigning ABMs.  The primary reason for considering a mixture of RVs is to allow for 

decoys, which can be thought of as RVs with no effectiveness against targets.  There is 

also, of course, the possibility that the RVs are not decoys, but simply differ in 

effectiveness. 

We assume throughout that ABMs are perfect in the sense that each ABM will 

reliably eliminate one RV.  The simplicity of this assumption will make it easier to 

explore the real focus of our inquiry, which is the mixed nature of the attack.  If the RVs 

are not mixed, then there are existing methods where the assumption of ABM perfection 

is not necessary (Burr, et al., 1985).   

ICBMs are vulnerable in their boost, midcourse (exoatmospheric) and terminal 

phases.  Boost phase intercepts are in a sense ideal, since the ICBM is destroyed before it 

can deploy its payload, but difficult to carry out.  Terminal defenses benefit from the 

effect of the atmosphere, which strips away some of the decoys that are effective outside 

of the atmosphere.  Midcourse (exoatmospheric) ABMs offer the flexibility of being able 

to defend many targets, rather than just one.  Effective defensive systems can be 

constructed out of the joint use of both midcourse and terminal ABMs, although such 

systems are comparatively difficult to design and study. Miercort and Soland (1971) 

study the attack of such a system under the assumption that all interceptors (midcourse 

and terminal) are perfect, taking the defensive assignments as given.  Our ambition is to 

solve a two-sided problem with a mixed attack, so we make the simplifying assumption 
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that all ABMs are terminal, except possibly for a midcourse ABM system whose reach 

includes all targets, and which is also perfect.   

To some extent, the mixed context justifies our assumption that ABMs are 

perfect, which is operationally equivalent to assuming that ABMs are sufficiently 

threatening that the attacker chooses to neutralize them with decoys or small RVs, rather 

than subjecting one of his more powerful RVs to possible intercept.   

Even though the atmosphere is an ally in stripping away light decoys, it is still 

possible to design functional terminal decoys.  Such decoys are heavy enough to displace 

other RVs, so the attacker has a payload tradeoff to make between firepower and dilution 

of terminal ABM defenses.  This tradeoff is central to our problem.  

General Analysis 

Terminal ABMs must wait until incoming RVs are close to their targets before 

attempting an intercept.  Operationally, “close” means that ABMs must be assigned to 

individual targets, with no possibility that an ABM assigned to one target can defend 

another.  The attacker must similarly partition his forces, with the outcome at each target 

depending only on the forces assigned to that target.   

The sequence in which the assignments are made, and the knowledge that each 

side has when making assignments, are crucial.  Each side would, of course, prefer to 

make its assignments knowing the assignments that have already been made by the other. 

The scenario most favorable to the defense is when the ABM force can examine the 

whole attack, all at once, before committing any ABMs.  Given the difficulty of 

determining the attacker’s ultimate intention when the first ICBM is launched, this 

assumption is rarely made.  Our analysis here is based on the opposite assumption, where 
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the physical deployment of ABMs is observable and reveals to the attacker the extent to 

which targets are being defended.  The intermediate case where both sides must commit 

forces without knowing the other’s intention is a kind of Blotto game (Washburn, 2003) 

that generally goes by the name of “pre-allocation” (Eckler and Burr, 1972; Bracken, et 

al, 1987).  In a preallocated defense, a secret but fixed number of interceptors is 

irrevocably committed to each target.  If the number of attackers exceeds that number , 

then further interceptors are not committed, even if the command and control system 

would permit it.  This seems unlikely when discussing a defense against small attacks.  

Besides, Blotto analyses have been performed only for homogeneous attacking forces, 

and we have no useful generalization to offer. 

When the attacker has the last move, the best that the defense can hope for is that 

his ABMs will eliminate the most powerful attacking weapons, one for one.  If the 

defense also incorporates the idea that no attacking RV will be deliberately allowed to 

penetrate while the means of intercepting it are still available, as we assume to be the 

case, then the best that can be hoped for is that the ABMs will intercept the least effective 

RVs.  The reason for this is that the attacker can always ensure that result by attacking 

each target at its known defense level, using the least effective RVs, before going on to 

attack the now undefended targets with more powerful RVs.  The defense may be even 

less effective, since heavily defended targets may simply be ignored by the attacker while 

undefended or lightly defended targets are overwhelmed.  In that case some ABMs might 

eliminate no attackers at all.  We call situations where some ABMs are wasted in this 

manner “defense dominant”, since they characterize the attack of a strong defense by a 

weak attacker.  It is defense dominant situations that are our primary concern. 
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In the defense dominant case, it is natural for the defense to plan his ABM 

allocations in such a manner that the attacker sees no weak spots, in the sense that there 

are no targets where there is a large return per attacker.  Such defenses are called Prim-

Read (Read, 1958; Karr, 1981; Burr, et al, 1985) defenses, for which there are well 

known optimal allocation methods when all attackers are identical.  Our intention is to 

generalize this work so that the attackers can differ in terms of the amount of target 

killing power. 

The killing power of a nuclear arsenal has a number of measures.  One is a simple 

count of the numbers of warheads.  Nuclear arms limitation treaties deal mainly with this 

measure, since it is the easiest to verify.  Other measures depend on the yield (Y, in 

megatons) and accuracy C (“circular error probable” in nautical miles) of the warheads.  

Y2/3 is the warhead’s Equivalent MegaTons (EMT), essentially a measure of the amount 

of two-dimensional area that can be covered lethally.  EMT measures a warhead’s 

capability to kill soft countervalue targets such as urban areas.  Y2/3 /C2 is a warhead’s 

Counter Military Potential (CMP), a measure of its ability to kill hardened point targets.  

Both CMP and EMT are cumulative measures; that is, the effectiveness of an arsenal is 

just the total effectiveness of the RVs composing it.  During the Cold War, the arsenals of 

the United states and the Soviet Union differed strongly in these measures, with the 

United States (Soviet Union) having more CMP (EMT) (Current News, 1976). 

The most natural measure of power for a small attack is probably EMT, but we do 

not wish to be specific, so we refer in the sequel to a general cumulative measure called 

“bangs” that could be either EMT or CMP.  However, a bang must be one thing or the 

other; that is, the target set cannot consist of a mixture of hard and soft targets.  If the 
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target set is mixed in that manner, then both the total EMT and CMP of the attacker’s 

arsenal are important, and the method described below will not apply.  

The attacker’s arsenal is to be expended in attacking a collection of targets 

indexed by i, each of which has an associated value function Vi(x) that represents 

“expected value killed if the target is undefended and attacked by x bangs”. If target i is 

defended by d perfect ABMs, then the first d attacking RVs will be eliminated, and only 

the bangs associated with RVs in excess of d will affect the target.  The first d attackers 

“soak up” the ABMs, so it is useful to think of each RV as possessing a single “soak”, in 

addition to its bangs.  Obviously, if the vehicles differ bangwise, then the attacker will 

use small ones (especially decoys) to soak up the defense.  Since the defenses are 

assumed known when the attack is being optimized, our object is to calculate the 

minimum (over defenses) of the maximum (over attacks) of the total target value killed, 

or, more concisely, the min max value. 

The numbers of ABMs and soaks are required to be integer-valued, but the 

number of bangs possessed by an RV can be any nonnegative number.  Every RV has 

exactly one soak, but the number of bangs depends on the physical system of units in 

use  — an RV with only .01 bangs might actually be very powerful.  The total supply of 

bangs is assumed to be infinitely divisible, so that a given quantity of bangs can be 

distributed arbitrarily over the targets.  This assumption makes most sense when there is a 

diversity of RVs, but is uniformly employed below without further inquiry into the 

question of diversity.  In essence, once the set of targets at which the defenses have been 

soaked up is determined (this set automatically includes all undefended targets), the 

attacker is free to allocate the total bangs of all remaining RVs to that set of targets.   
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We first consider the case where only two types of RV are available to the 

attacker, one being decoys.  The mix of RVs is subject to a linear payload constraint, but 

is otherwise determinable after the defense has been observed by the attacker.  The 

constraint is b+λs≤B, where b and s are the number of bangs and soaks, respectively.  

Parameter B is the total ICBM payload measured in bangs, and each decoy displaces λ 

bangs, where λ is some positive constant.  We refer to this as the “free” case, since the 

attacker is assumed free to determine s (a nonnegative integer) and b (a nonnegative real 

number) after observing the defenses.  We will then consider “constrained” problems 

where the attacking arsenal is a given, arbitrary mixture of vehicle types.  The allocation 

of the attacking arsenal can be made after observing the defenses even in the constrained 

case, but the arsenal itself is considered fixed and known to the defense. 

The following two examples of the free case illustrate the attack dominant and 

defense dominant cases. 

 

Example 1:  Suppose there are a small target and a large target, with the two 

value functions being V1(x) = (1 - exp( - x)) and V2(x) = 2(1 - exp( - x)).  There are four 

ABMs, and the attacker is constrained by b + 0.5s ≤ 3.  It is easy to show that the 

optimal defense is to use all four ABMs to defend the second target.  Even knowing this 

distribution, the attacker should still soak up all four ABMs and use his remaining bang 

to achieve 1.285, splitting the bang (0.15, 0.85) between the two targets.  If the attacker 

does not soak up all four ABMs, he can achieve at most 1 by attacking the first target.   

If the attacker actually had six identical RVs with 0.5 bang each, then the best 

“split” of the bang remaining after soaking up the four ABMs would be to use the whole 
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bang on target 2, this being better than the (0.5, 0.5) split achieved using one RV on each 

target.  However, as mentioned earlier, we assume that bangs can be split arbitrarily 

among the targets, even in small examples such as this one.   

Example 2:  This is the same example except that B = 2; i.e., b + 0.5s ≤ 2.  

Against the same defense, the attacker would ignore the second target, achieving 

1 - exp( - 2) = 0.865 on the first.  The best defense is to assign 1 ABM to the first target 

and 3 to the second.  The best attack is then on the second target, with the payoff being 

2(1 – exp( – 0.5)) = 0.787.  This is the min max total value killed.  Unlike example 1, this 

example is defense dominant because at least one defended target is not attacked when 

both sides allocate optimally.  

General analysis of the free case 

Let T be the set of targets, let D be the total number of ABMs, and let the min 

max value of the payoff to the attacker from attacking T be M(B,D).  Thus D = 4 and 

M(3,4) = 1.285 in example 1, or M(2,4) = 0.787 in example 2.  Our object is to find a 

general upper bound for M(B,D). 

The problem of optimally allocating bangs when D = 0 is a separable, concave 

maximization problem.  It closely resembles the search theory problem of allocating 

search effort to a set of places where a target might be, so a variety of efficient solution 

techniques is known (see Washburn(1981), or more generally Ibaraki and Katoh (1988)).  

If S is any subset of the targets, let the maximum total value achievable with B bangs 

when the targets are undefended be V(S,B).  For convenience, we define V(S,B)≡0 for 

B<0. 
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If a target is defended by d ABMs, then the attacker should either soak up all d of 

them before applying bangs, or else ignore the target entirely.  Therefore, once the set of 

targets to be attacked has been selected and the price of admission paid in soaks, the 

attacker faces the concave optimization problem described above.  Formally, let I(S) be 

the number of interceptors assigned to target subset S.  The function I() is to be chosen by 

the defense, subject only to the constraint that no more than D interceptors can be used in 

defending the whole target set T.  Once the defense is committed, the attacker chooses a 

subset S to attack.  Thus 

 ( )( , ) min max ( , ( ))I T D S TM B D V S B I Sλ≤ ⊂= −

i

*V

 (1) 

Since the attacker is free to attack the entire target set, it follows from (1) that 

M(B,D)≥V(T,B - λD), with equality holding in the attack dominant case.  Theorem 1 

gives circumstances where equality must hold. 

Theorem 1: Suppose that Vi(0)=0 and Vi(x) is an increasing value function for 

x ≥0, with > 0, for i=1,…,n.  Then there exists a B* such that the 

attack is dominant for B>B*. 

*lim ( )x iV x V→∞ ≡

Proof:  Let V V  Since V(T,B) increases with B 

to VTOT, there exists some B* such that V(T, B* - λD) > VTOT - Vi*. For B > B*, the 

attacker can gain more than VTOT - Vi* by engaging the entire target set T, whereas he will 

gain at most that amount by engaging any set of targets that does not include i*.  

Therefore target i* must be attacked, and an optimal defense is to concentrate all D 

ABMs on i*.  All D ABMs will be soaked up, so the attack is dominant.  QED 

* *

1

,  and let arg max .
n

TOT i i i
i

i
=

≡ ≡∑
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In examples 1 and 2, with parameters other than B as specified, B* is at most 3 

and at least 2. 

Except in attack dominant cases, B* will be greater than B.  M(B,D) could still be 

determined using (1), but the number of evaluations of V() could easily be very large.  If 

there are N targets, then the number of possible defenses is the number of combinations 

of N+D – 1 things taken D at a time.  For each of these defenses, 2N - 1 attacks must be 

considered unless B is small enough to make the attack of some target subsets infeasible.  

If N = 10 and D = 10, the total number of evaluations would be (92,378)(1,023), 

approximately 108.  Even though any given evaluation of V() is not difficult, this 

combinatorial explosion will make an exact evaluation of M(B,D) difficult in even 

moderately large problems. 

Our interest is mostly in the defense dominant case, which is characterized by the 

attacker ignoring some targets and looking for cheap victories at others.  We will find an 

upper bound on M(B,D) by having the defense control the return per bang that is 

available to the attacker.  If the target is defended by d ABMs, and if the attacker chooses 

to soak up those ABMs and commit an additional x bangs, then the return per bang 

(converting the soaks into bangs at the rate λ) is Vi(x)/(x+λdi).  If the return per bang is to 

be bounded above by r>0, then it is necessary that Vi(x)/(x+λdi) ≤  r for all x, or, 

equivalently, that λdi ≥ Fi(r), where  

 0( ) max { ( ) / }i x iF r V x r x≥≡ − . (2) 

The function Fi(r) exists and decreases from ∞ to 0 on the interval (0, ∞), as long as Vi(x) 

is as specified in Theorem 1.  We can now define the smallest return per bang that is 

permitted by an inventory of D ABMs when the cost of a soak is λ > 0: 
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 , (3) 

where  is the smallest integer that is not smaller than z; i.e., z rounded up.  If the set 

over which the minimum is taken is empty, we take r(λ,D) = ∞.  Since Fi(r) approaches 

infinity monotonically as r approaches 0, a finite minimum will be found somewhere in 

(0, ∞) as long as λ>0. The individual terms of the sum in (3) are the defense levels di that 

are required to assure r(λ,D).  A notable feature of this defense is that it does not require 

knowing B.  Indeed, this feature is sometimes taken to be definitive of the Prim-Read 

defense   

1

( , ) min{ : ( ) / }
n

i
i

r D r F r Dλ
=

≡   ∑ λ ≤

z  

Figure 1 shows a plot of the sum in (3) versus r for Examples 1 and 2.  When 

λ = 0.5, the smallest value of r for which the sum is smaller than the given number of 

ABMs is r(0.5,4) = 0.520.  
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Figure 1: Showing the total number of ABMs required (D) versus the return 

per bang (r) in examples 1 and 2. 

Once r(λ,D) is obtained, the upper bound is obtained by multiplying by B: 
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 ( , ) ( , )M B D Br Dλ≤  (4) 

This bound is 1.560 in example 1, or 1.040 in example 2, compared to the true values of 

1.285 and 0.787.   

Our contention is that the upper bound is only slightly larger than the true min 

max value in defense dominant problems where there are many targets of different types.  

We have given little evidence of this so far, since 1.040 is not a particularly good 

approximation to 0.787 in Example 2.  But consider what happens when Example 2 is 

scaled up so that there are two targets of each type, two “small” and two “large”, with B 

and D each likewise doubled.  If the defense chooses to defend both small targets with 1 

ABM each, and both large targets with 3 ABMs each, then the attacker should attack one 

target of each type, leaving him with 2 bangs after soaking up four ABMs.  The small 

target should get 0.65 bangs and the large target 1.35 bangs, for a total score of 

0.48 + 1.48 = 1.96. Furthermore, any defense must leave some pair of small and large 

targets with at most 4 ABMs between them, so the attacker can do at least this well 

regardless of the defense (if two ABMs are assigned to each target, for example, the 

attacker could attack both large targets and achieve 2.53).  Thus M(B,D) = 1.96.  The 

upper bound in this scaled-up problem is 2.08, only 6% larger than M(B,D). 

Intuitively, the attacker has so many choices of what set of targets to attack in 

large problems that he is almost bound to be able to partition his force so that each attack 

is carried out at a level that achieves nearly r(λ,D) per attacker.  Further evidence of this 

phenomenon is shown in Figure 2, which shows the best possible return per attacker in a 

problem where there are 10 identical “small” targets, 10 ABMs, and λ=0.5.  The ABMs 

should of course be distributed one per target.  The best possible return per attacker is 
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then r(0.5,10) = 0.424, achieved when the attacker uses 0.858 bangs per attacked target 

after soaking up the single ABM, a total of 1.358 bangs of payload per attacked target.  

With only a small total payload, say B = 1, the attacker has no choice but to attack one 

target by soaking up its ABM and then assigning 0.5 bangs, which is inefficient.  On the 

other hand, the return per attacker is maximal when B is nearly a multiple of 1.358, or 

when B is large enough to allow some flexibility in the number of targets attacked.  Once 

B is large enough to make attacking all targets optimal, the defense is no longer dominant 

and the concavity of the value functions causes the return per attacker to begin 

decreasing, as in Figure 2.   

0.36
0.38
0.4
0.42
0.44

0 5 10 15 20 25 30
Total Payload (B)

 

Figure 2: Return per attacker in a problem with 10 identical targets.  The 

defense is dominant for B≤13. 

The actual optimization problem faced by the attacker for a given defense is 

separable, but the presence of a defense complicates the solution because of the “buy-in” 

cost of soaking up the interceptors.  A variety of methods are available (see Ibaraki and 

Katoh, 1988) for solving such problems, but, since our object is merely to show that the 

results of this optimization will be close to the upper bound when the defense is 

dominant, we content ourselves with (4). 
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Fixed Arsenal analysis 

So far we have been assuming that the attacker is free, after observing the 

defense, to convert bangs into soaks at the rate λ.  In this section, we assume instead that 

the attacker possesses a fixed arsenal of RVs, each with specified numbers of bangs in the 

interval [βmin, βmax].  For example, the attacker might have 10 RVs with a total of 8 

bangs, the bang vector being β=(0, 0, 0, 0.4, 0.8, 0.8, 1, 1, 2, 2).  Here βmin = 0 and  

βmax = 2.The first three RVs are decoys, with the rest listed in order of increasing bang 

measure.  The problem is otherwise as described in the introductory section, with a fixed 

number D of perfect ABMs and a value function for each target.  The bang vector is 

assumed known to the defense.  Let the min max value killed by the attacker be M(β,D). 

The attacker still has the problem of overcoming defenses, and should use the 

least powerful RVs, beginning with the decoys, to do so.  A given RV can be used either 

for its bangs or its soaks, but not both, so there is a tradeoff between the two measures.  

The efficient frontier can be shown as a concave relationship between bangs and soaks.  

Figure 3 shows such a diagram for the example above, together with one of many 

possible tangents.  The point of tangency is one where the first 8 RVs are used as soaks, 

with the last two contributing 4 bangs. As before, we assume that the bangs can be 

distributed arbitrarily over the targets, even to more than 2 targets if the attacker desires. 
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Figure 3:  The tradeoff between bangs and soaks in an example with 10 RVs. 

 

Consider a relaxation of the attacker’s problem where the efficient frontier is 

replaced by one of its tangents.  Since the tangent lies entirely above the efficient frontier, 

any solution of the relaxed problem is an upper bound on the total value that the attacker 

can kill.  Let the expression of the tangent curve be b + λs ≤ B(λ), where B(λ) is the 

vertical intercept and -λ is the slope.  Since this is the same form as the “free” problem 

considered earlier, it follows that M(β,D) ≤ B(λ)r(λ,D).  Since λ is an arbitrary number 

in the interval [βmin, βmax], it follows that  

 
min max

( , ) min ( ) ( , )M D Bβ λ β r Dβ λ λ≤ ≤≤  (5) 

Formula 5 is the desired upper bound on the min max value in the constrained case. 

 

Example 3:  This is the same as example 1 except that there are three small and 

three large targets, D = 12, and the bang vector β is as given above and shown in Figure 3. 

The minimizing value for λ is 1, which corresponds to a defense where large (small) 

targets are defended by 3(1) ABMs.  Since r(1,D) = 0.348 and B(1) = 12, 

M(β,D) ≤ 4.176 according to (5). Against that defense, the best attack is against 1 small 
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and 2 large targets, which requires 7 soaks and leaves the 3 largest RVs.  Distributing the 

5 associated bangs optimally over the three targets produces a total value killed of 

M(β,D) = 4.101, slightly smaller than the bound. 

Given the lack of variety in the targets, this comparison between value and bound 

could be made worse by postulating a number of defenders that is not a multiple of 3.  

Suppose D = 14 instead of 12.  The computation of r(λ,D) does not change, since it is 

based on the target that is easiest to attack, so neither does the bound. There are 2 ABMs 

left over whose use is not guided by theory.  If these two are allocated to large targets, so 

that two of the large targets have 4 ABMs each, then the attacker should ignore both of 

those targets, attacking the other large target and the three small ones.  This will achieve 

3.938 in total, while the bound is still 4.176.  If the leftover ABMs are used in any other 

way, the attacker can still achieve 4.101, so the two leftovers should indeed be allocated 

to large targets.  If D=13, then neither the bound nor M(β,D) changes; that is, the 

thirteenth ABM is useless against the postulated attack. 

An extended example of the free type 

We consider here an extended example, assuming a defense dominant scenario 

with the United States being the defender.  The threatened nuclear attack is to be entirely 

against urban areas, with the goal being to cause as many casualties as possible.  We 

assume that each equivalent megaton will cover 58 km2 lethally (SPARTA (2001)), so 

the attacker should seek to attack urban areas with a high population density.   

Table 1 shows the population and area of the five largest Continuously Built up 

Urban Areas (CBUA) in the United States according to Demographia (2003).  We 

assume that the population is uniformly distributed over the stated area; that assumption 
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is significantly wrong, but still sufficient for our purposes here.  We also assume that all 

CBUAs are within reach of the attackers.  If an undefended CBUA has population P and 

area A in km2, then the value function when x EMT are allocated is VLIN(x)=P min(1, 

58x/A).  This (truncated) linear function incorporates the implicit assumptions that edge 

effects and the difficulty of covering a region with circles can be ignored, and that RVs 

are perfectly accurate.  For comparison we also analyze the exponential value function 

VEXP(x) = P(1 − exp(−58x/A)).  The exponential case assumes a poorly coordinated attack 

where the area covered by x EMT is randomly distributed within the CBUA.  The two 

cases should bracket the practical case where RVs are aimed in the presence of targeting 

errors.  In general 0≤ VEXP(x)≤ VLIN(x). 

Assume first that there are 100 ABMs (D=100), and that the linear case applies.  

Using (2) and (3), we find that r(0.5,D)=110,959 and r(0.25,D)=120,317, with 

corresponding ABM distributions as shown in Table 1.  If there were no ABMs, the 

largest number of casualties per EMT would be 158,278, obtained by attacking Los 

Angeles.  Thus, the presence of ABMs has the effect of reducing the number of casualties 

per EMT available to the attacker.  As λ decreases, the ABMs tend to be concentrated on 

the most vulnerable target, and the overall effect of the ABM defense decreases because 

it becomes increasingly easy to soak them up with decoys.  The total number of casualties, 

of course, depends on the unspecified magnitude of the attack. 

If λ is held constant at 0.5 while D is varied in the linear case, the dotted curve in 

Figure 4 results.  By the time D=3000, the first 61 CBUAs are defended, rather than only 

the first 5.  Those 61 include Washington, DC and finally Atlanta.  It takes about 1000 
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ABMs to reduce the casualty rate by a factor of 2, compared to no defense.  Further 

increases in the number of ABMs have increasingly small effects.   

CBUA Population Area (km2) ABMs 

Los Angeles 11,789,000 4,320 64 (94) 

San Francisco-San Jose 5,479,000 2,582 10 (5) 

Miami  1,915,000 914 3 (1) 

New York 17,800,000 8,684 22 (0) 

New Orleans 1,009,000 513 1(0) 

 

Table 1:  The optimal distribution of 100 ABMs in the linear case over 

Continuously Built Up Areas in the United States when each decoy displaces 0.5 

EMT ( 0.25 EMT).   

 

The exponential case is shown by a solid line in Figure 4.   The linear and 

exponential value functions have the same initial slope, so both cases have the same 

maximum casualties per EMT when there are no ABMs.  As the number of ABMs grows, 

so does the difference in casualty levels between the two cases. For any given level of 

interceptors, the attack is more spread out over CBUAs in the exponential case because 

of decreasing returns to the attacker at targets with high population density.  The defense 

is spread out similarly; when D=100, fifteen cities are defended, as opposed to 5 in the 

linear case, and only 45 ABMs defend Los Angeles, as opposed to 64 in the linear case. 
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Figure 4: Showing the effect of increasing numbers of ABMs when λ=0.5.  

Solid curve is the exponential case, dotted curve is the linear case. 

 

The introduction of ABMs, even thousands of them, succeeds in lowering the 

attacker’s return by only a factor of 2 or 3 over what it would be without them.  This low 

effectiveness is not due to imperfections in the ABMs, since they have all been assumed 

to function perfectly.  It is due, instead, to a profusion of attractive targets, together with 

the rule that (terminal) ABMs can only protect the target to which they are assigned.  A 

layered defense that includes flexible, midcourse interceptors would be more effective, 

assuming that the midcourse interceptors could not themselves be easily decoyed.  

In the free case, the ultimate (bound on the) damage caused by the attacker is 

Br(λ,D), which is of course proportional to B, the payload that attacks the terminal 

defenses.  The effect of any midcourse interceptors is essentially subtractive on B.  

Suppose, for example, that there are I midcourse interceptors, that effective midcourse 

decoys cost µ each in terms of payload, with µ presumably less than λ because 

exoatmospheric ABMs can be light, and that the initial payload is A.  Then, assuming that 
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the interceptors get soaked up by decoys, B = A - µI.  Damage to the targets would be 

additionally reduced, of course, if midcourse interceptors could discriminate RVs from 

decoys, or even if they could attack RVs at random. 

The reader who wishes to vary the assumptions made above, or to investigate the 

computations lying behind Figures 1-4, may wish to download BangSoak.xls, a workbook 

available at http://diana.or.nps.navy.mil/~washburn/ .  That workbook was used in 

making most of the computations reported above. 

 

Summary 

We have introduced a method for quickly approximating the effects of perfect 

terminal ABM systems against a mixed attack, under the assumption that the attacker is 

in control of which RVs are intercepted by the ABMs.  The method is simple enough to 

be implemented in a spreadsheet.  The effect of terminal defenses is highly dependent on 

the number of decoys present, or, in the free case, on the payload displaced by a decoy.  
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